DNA

Genetic Information

Nucleotides

Nucleobases

Phosphate Group

Nucleic Acid

  • Nucleic acid sugars

    • Structure: The sugar found in nucleic acids is a pentose, which has a five-atom ring. Specifically, the sugar in:
    • Pentose binds:
  • overview

    • Nucleic acids
    • Comparison of DNA and RNA
  • Dna structure and the human genome

  • RNA classes and their structure

    RNAs can be differentiated into various types, which differ in their length, structure, and function. Depending on the type, RNA can be a single-stranded or double-stranded segment.

    https://s3-us-west-2.amazonaws.com/secure.notion-static.com/b54f6dd9-e79f-47b3-8223-fd068d599586/Untitled.png

Laboratory Testing

  • Polymerase chain reaction (PCR)

    • what is it?
    • common sequence?
    • phase
    • Uses
    • Reverse transcriptase polymerase chain reaction (RT-PCR)

Gene expression and transcription

Transcription

Translation and protein synthesis

Summary

Gene expression is the process by which genetic information flows from DNA to RNA to the protein. The translation of DNA into RNA is termed transcription; protein synthesis from RNA templates is called translation. Details on gene expression and transcription can be found in a separate learning card.

Translation is carried out by ribosomes, which are large molecular complexes of ribosomal RNA (rRNA) and proteinsRibosomes bind to RNA templates, also termed messenger RNA (mRNA), and catalyze the formation of a polypeptide based on this template. In the process, a charged transfer RNA (tRNA) recognizes a nucleotide triplet of mRNA that matches a specific amino acid (AA). The new AA is then linked to the next AA of the growing polypeptide on the ribosome. Translation ends once a specific nucleotide sequence of the mRNA is reached (a stop codon). The ribosome subsequently dissociates and the mRNA and newly synthesized protein are released.

Before proteins are functional, a proper shape and destination are both necessary. Proteins begin to fold into their three-dimensional structure during translation according to the AA sequence and local chemical forces and reactions. Various specialized proteins (folding catalysts, chaperones) also help the newly formed proteins to fold properly and reach their correct destinations (e.g., cytosol, organelles, extracellular matrix) via protein modifications. The translation rate of proteins is adjusted to the current conditions of the cell and bodily demands, and is affected by the presence or absence of certain nutrients.

Genetic code

The genetic code

To help remember the stop codonsUAA → U Are Away, UAG → U Are Gone, UGA → U GAway

https://media-us.amboss.com/media/thumbs/small_579a129a8904b.jpg

https://media-us.amboss.com/media/thumbs/small_5afec88319730.jpg

https://media-us.amboss.com/media/thumbs/small_58e4c5d4f1b2e.jpg

tRNA charging

  • Description: binding of tRNA to its corresponding AA
  • Reaction mechanism: The charging of tRNA in the cytosol occurs in two steps and is catalyzed by aminoacyl tRNA synthetases.
    • Aminoacyl-tRNA synthetases are specific to the corresponding tRNA (there is at least one synthetase for each proteinogenic AA).
    • Step 1: AA + ATP → aminoacyl-AMP + PPi
    • Step 2: tRNA + aminoacyl-AMP → aminoacyl-tRNA + AMP
  • Mischarged tRNA:
    • AAs are checked before binding tRNA, but if an incorrect AA binds the tRNA, the bond is hydrolyzed
    • Any mischarged tRNA inserts the wrong AA into the polypeptide, which is why AA-tRNA synthetase is important for accurate AA selection.

https://media-us.amboss.com/media/thumbs/small_5aa694943d317.jpg

Translation process

Translation occurs in three phases in a functional ribosome: initiation, elongation, and termination. It requires mRNAtRNA, and rRNA (see RNA section from nucleic acidsDNA and RNA).

Ribosome binding sites

Eukaryotes have Even-numbered ribosomal subunits (40S + 60S → 80S); PrOkaryotes have Odd-numbered ribosomal subunits (30S + 50S → 70S).

For binding sites, think of an “APE” party: 1. A site → Arrival with Aminoacyl-tRNA 2. P site → Growing (GTP) Party of Peptides 3. E site → party Ends and is EmptytRNA Exits; Growing stands for GTP as energy source

1. Initiation

  • Description: assembly of functional ribosomes with the help of initiation factors (IFs) and recognition of the start codon (AUG) on the mature mRNA by the initiator methionyl-tRNA (met-tRNA)
  • Process

https://media-us.amboss.com/media/thumbs/small_594d092051203.jpg

  1. Initiator met-tRNAeukaryotic IF2 (eIF2), and GTP bind to the small ribosomal subunit to form a preinitiation complex.
  2. mRNA is recognized by eIF4 and binds to the preinitiation complex. eIF4 recognizes mRNA:
    • Usually at the 5' cap in eukaryotes
    • Sometimes at an internal ribosome entry site (IRES)
      • A site of mRNA that allows translation initiation without a 5' cap
      • Most commonly located in the 5' UTR (especially of RNA viruses like poliovirus), but can be located at many sites in the mRNA and also occurs in eukaryotes
    • Initiator met-tRNA recognizes the start codon (typically the first AUG triplet after the 5' cap of the mRNA) and binds the P site.
  3. GTP hydrolysis provides energy for the release of eIF2, allowing the large and small ribosomal subunits to assemble into a functional ribosome (the final initiation complex; 80S in eukaryotes, 70S in prokaryotes).

https://media-us.amboss.com/media/thumbs/small_583593c6553e6.jpg

https://media-us.amboss.com/media/thumbs/small_58e3a09b0bd09.jpg

2. Elongation

  • Directions of processes
    • mRNA is read in a 5' to 3' direction
    • Elongation occurs in an N-terminus to C-terminus direction: The N-terminus of the growing protein also initially leaves the ribosome.
  • Process
    • Initiator met-tRNA is located at the P-site or another previously matching aminoacyl-tRNA is bound there.
    • An aminoacyl-tRNA complex with eukaryotic elongation factor 1 (eEF1hydrolyzes GTP, thereby releasing eEF1 and GDP and providing the energy for aminoacyl-tRNA to bind the A site (anticodon matches the codon of the mRNA).
    • The polypeptide is elongated by the stepwise addition of AAs via peptide bonds between the AAs bound to the A-sites and P-site (via tRNA).
      • Bond created by a dehydration reaction catalyzed by a peptidyl transferase that is intrinsic to the rRNA (“ribozyme”) of the large complex
    • Ribosomal translocation
      • The ribosome moves one triplet along the mRNA in the 3' direction.
      • After translocation, the tRNA that was in the A-site is now in the P-site, and the tRNA that was in the P-site is now in the E-site.
        • The A site is free again and can bind to a new aminoacyl-tRNA (in a complex with eEF1/GTP).
        • A peptidyl-tRNA is present at the P site with the growing peptide chain.
        • The unloaded tRNA is located at the E site.
      • The unloaded tRNA is released from the E-site.

https://media-us.amboss.com/media/thumbs/small_58e6486de74fd.jpg

https://media-us.amboss.com/media/thumbs/small_5aa693ef42cba.jpg

3. Termination

  • release factor recognizes the stop codon and hydrolytically cleaves the peptidyl tRNA bonds (requires GTP) → release of the protein

ATP for Activating (chargingtRNAGTP for tRNA Gripping and Going through the ribosome (translocation) for Growing a polypeptide

Protein folding and misfolding

Protein folding

  • Description: The process by which a protein goes from an unfolded native state to form a three-dimensional structure via progressive stabilization of the intermediate states until the most favorable energy level is achieved.

    • Correct protein folding begins during translation and is required for a protein to perform its function within the cell or organism.
  • Intrinsic factors

    • The spatial structure is specified in the AA sequence of the protein (see protein structure for more details).

    • Largely driven by hydrophobic interactions, Van der Waals forces, H-bonds, salt bridges, disulfide bonds

  • Regulatory proteinsproteins that help other proteins to form their native structure

    • Chaperone proteins
      • Protein complexes that prevent protein aggregation during synthesis (thus prevent making proteins nonfunctional) and permit refolding of misfolded proteins in a protected environment
      • Assist in transporting (precursor) proteins
      • ATP is consumed in the process.
      • Examples: heat shock proteins (e.g., Hsp70, Hsp60, Hsp90) prevent denaturation or misfolding at high temperatures or when under chemical stress
    • Folding catalysts: enzymes that accelerate rate-limiting steps during protein folding

Protein misfolding

Post-translational modification

Many proteins require specific covalent alterations (co- or post-translational modifications) in addition to correct folding to function properly. Examples include glycosylationlipid anchorsphosphorylationacetylationubiquitinationADP-ribosylationbiotinylationcarboxylationmethylation and hydroxylation.

Protein glycosylation

Untitled

N-linked glycosylation, the attachment of sugar to the asparagine residue of proteins, begins in the rough ER!Enzymatic glycosylation should not be mistaken with nonenzymatic glycation. In glycation, aldoses (e.g., glucose) spontaneously bind to the amino groups of proteins and may influence their function! (A classic example is HbA1c, whose function is unaffected by glycation.)

https://media-us.amboss.com/media/thumbs/small_5a2fa263c2bc1.jpg

https://media-us.amboss.com/media/thumbs/small_58e4f18f71c1c.jpg

Lipid anchors

  • Description: Most membrane proteins interact with lipid membranes via hydrophobic side chains (e.g., valine or leucine residues). However, lipid-anchored proteins are modified to covalently bind lipid anchors.
  • Types
    • Acylation: linkage with long chain fatty acids, e.g., palmitic acid
    • Isoprenylation: linkage of a cysteine side chain of the protein with polyisoprene via a thioester bond, such as in:
      • Farnesylation: linkage with a farnesyl residue (three isoprene units, total of 15 C atoms)
      • Geranylgeranylation: linkage with a geranylgeranyl residue (four isoprene units, total of 20 C atoms)
    • GPI anchor: linkage with glycosylphosphatidylinositol (GPI), a glycolipid

Reversible covalent alterations

Enzymatic reversible protein modification alters the protein's spatial structure (conformation), thereby allowing its activity to be regulated. For example, a protein may interact with other proteins and/or become recognizable as a substrate. Reversible protein modification essentially allows the protein to be switched on or off.

Protein trimming

  • Description: the excision of N- or C-terminal propeptides to create a mature protein (from an inactive state)
  • Examples:

Protein sorting

Protein transportation

A protein's intended final destination depends on its signal sequence (if it has one) at the N-terminus and determines if translation is concluded on free ribosomes or ribosomes on the rough ER.

Untitled

Translocation of ribosomes on the rough ER

Proteins that leave the cell (secretory proteins), as well as membrane and lysosomal proteins, are initially synthesized on free ribosomes of the cytosol. However, their synthesis is paused shortly after starting and the ribosome is transported to the cytosolic side of the rough ER. Protein synthesis then recommences and the protein is directly synthesized into the ER lumen.

Mechanism

  1. Initiation of translation on the free ribosomes in the cytosol
  2. If a signal sequence (specific amino acid sequence of 9–12 amino acids) is synthesized, it is bound to a signal recognition particle (SRP, a ribonucleoprotein):
  3. SRP induces a pause in translation and transports the ribosome with the peptide chain across the ER membrane.
  4. SRP facilitates binding of the ribosome with the signal peptide to the SRP receptor on the ER membrane.
  5. SRP and the SRP receptor are both bound to GTP, which is hydrolyzed to GDP. → SRP is released and can bind to a new signal sequence.
  6. The ribosome is transferred to a translocon, a protein-lined channel composed of a complex of proteins spanning the ER membrane, with opening of the translocon channel. This translocon is termed the sec61 channel.
  7. Translation resumes and the protein is synthesized in the ER lumen.
  8. The signal sequence is cut off from the growing protein by a signal peptidase.
  9. After termination of translation, the ribosome is released into the cytosol.
  10. The translocon channel closes and the synthesized protein is left in the ER.
    • During translation, the protein is folded into its native conformation.

If the SRP is absent or dysfunctional, there will be an accumulation of proteins in the cytosol of the cell!

https://media-us.amboss.com/media/thumbs/small_5b682bfeb8cbc.jpg

Other processes

https://media-us.amboss.com/media/thumbs/small_5adf47244c1f0.jpg

Translational regulation

  • Main component: initiation phase of translation (regulation via initiation factors)
  • Regulation mechanisms
    • Decreased formation of the ternary complex of eIF2GTP, and initiating tRNA through phosphorylation of the initiation factor eIF2
      • Phosphorylated eIF2 in the GDP-bound form can no longer be converted to its active GTP-bound form. The ternary complex necessary for initiating translation can no longer be formed and the translation rate is reduced.
    • Regulation of the cap recognition process by eIF4

Tidak ada komentar:

Diberdayakan oleh Blogger.